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[1] A Bayesian model coupled with a fuzzy neural network (BFNN) is developed to
enhance the use of geophysical data in lithofacies estimation. Prior estimates are inferred
from borehole lithofacies measurements using indicator kriging, and posterior estimates
are obtained by updating the prior using geophysical data. The novelty of this study lies in
the use of the fuzzy neural network for the inference of the likelihood function. This
allows spatial correlation of lithofacies as well as nonlinear cross correlation between
lithofacies and geophysical attributes to be incorporated into lithofacies estimation. The
effectiveness of BFNN is demonstrated using synthetic data emulating measurements at
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1. Introduction

[2] Heterogeneity of lithofacies has an important effect
on the determination of hydrogeological and geochemical
parameters in flow and contaminant transport [Dagan,
1989]. Modeling this heterogeneity often requires the use
of multiple sources of information, especially noninvasive
and cost-effective geophysical data [Keys, 1997; Hubbard
and Rubin, 2000; Kowalsky et al., 2001]. Geophysical
methods such as seismic reflection or refraction surveying
delineate shallow subsurface structure by detecting inter-
faces between different lithofacies. These methods are often
used to map large-scale subsurface structures, such as bed-
rock and channels, where the contrast of geophysical
properties between adjacent structures is large. To provide
detailed information about the spatial distribution of lith-
ofacies, however, methods such as borehole logging and
cross-hole tomographic surveying may be beneficial. Such
methods map lithofacies from their corresponding geophys-
ical properties, which are measured either directly at the
boreholes or indirectly from geophysical signals that tra-
verse between the boreholes.
[3] Several problems exist in the development of models

for incorporating geophysical data as well as geological and
hydrogeological information into lithofacies estimation. The
first problem is how to relate geophysical attributes to
lithofacies under field conditions. Typically, these relations
are nonunique and site-specific. Another problem is how to
quantify uncertainty associated with lithofacies estimation
due to ambiguity of geophysical interpretation, measure-
ment errors, and the scale disparity between different types
of geophysical measurements [Rubin et al., 1992]. Deter-
ministic models, such as graphical methods [Doveton,
1986], neural networks methods [Rogers et al., 1992], and

fuzzy neural networks methods [Chang et al., 1997], have
limitations in terms of these criteria.
[4] Geostatistical methods, especially indicator-based

models, have been found to be effective in overcoming
the aforementioned problems. For example, indicator krig-
ing and sequential indicator simulation methods can be used
to estimate or simulate lithofacies at unsampled locations
based on spatial correlation of lithofacies. These methods
can reproduce the spatial patterns of lithofacies revealed
from measured data without considering depositional pro-
cesses [Koltermann and Gorelick, 1996]. The methods,
however, lack a means of incorporating potentially useful
geophysical information into the estimation procedure.
Consequently, methods such as indicator cokriging [Rose-
nbaum et al., 1997; Deutsch and Journel, 1998], simulated
annealing [Aarts and Korst, 1989; Deutsch and Cockerham,
1994], and Bayesian methods [Rubin et al., 1992; Copty
and Rubin, 1995; Chen et al., 2001] have been developed to
combine geophysical and direct sampled data.
[5] Bayesian models are flexible in combining multiple

sources of information and have been successfully used for
many years to incorporate geophysical data into lithofacies
estimation. Bayes’ theorem provides a general framework
for data assimilation and allows various types of informa-
tion to be integrated in a hierarchical manner [Box and Tiao,
1973; Bernardo and Smith, 1994]. Using carefully built
Bayesian models, surface and crosshole geophysical data as
well as borehole lithofacies and geophysical logs can be
jointly used in lithofacies estimation. The parameters of
those Bayesian models can be identified using optimization
models, such as the maximizing a posteriori probability
density function (MAP) method [Lortzer and Berkhout,
1992], or sampling-based models, such as the Markov chain
Monte Carlo (MCMC) method [Gilks et al., 1998; Bosch,
1999; Bosch et al., 2001].
[6] However, one problem in using Bayesian models is in

the inference of the likelihood functions. Since relations
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between lithofacies and geophysical attributes are often
complex, it is difficult to make assumptions about the form
of the likelihood functions in advance. Instead, in this study
we develop a nonparametric model (a fuzzy neural network)
to derive the likelihood functions directly from a given data
set, with very few assumptions made about the form of the
likelihood function.
[7] The remainder of this paper is organized as follows.

Sections 2 and 3 describe the development of a general
Bayesian model and a fuzzy neural network for estimating
the likelihood function, respectively. Sections 4 and 5 allow
for evaluation of the effectiveness of the model in combin-
ing geophysical data by using two sets of synthetic data that
are based on field measurements at the Lawrence Livemore
National Laboratory (LLNL) Site. Conclusions are given in
section 6.

2. Bayesian Model

2.1. Bayesian Framework

[8] The proposed Bayesian model is developed based on
typical situations of environmental site characterization,
such as those at the Lawrence Livemore National Labora-
tory (LLNL) Site [Ezzedine et al., 1999]. The goal of the
study is to estimate lithofacies at location x, given lithofa-
cies measurements at locations xi, i 2 A, and given various
types of geophysical data g1(x), g2(x), . . ., gt(x) at location
x, where A = {1, 2, . . ., n} is an index set, n is the total
number of lithofacies measurements, and t is the total
number of geophysical attributes. The geophysical data,
made dimensionless after normalization, can be obtained
from crosshole tomographic surveys or estimated from
intensive borehole geophysical measurements using kriging.
Let Z(x) be a discrete random variable taking the value of 1,
2, . . ., or up to q, where q is the total number of lithofacies
at a site. Let z(xi) be the lithofacies at xi, an integer value
between 1 and q. The conditional probability to observe
lithofacies of type k at location x can be determined by
applying the following Bayesian formula:

P Z xð Þ ¼ kjg1 xð Þ; g2 xð Þ; � � � ; gt xð Þ;ð z xið Þ; i 2 AÞ
¼ Cf g1 xð Þ; g2 xð Þ; � � � ; gt xð Þð½ jZ xð Þ ¼ k; z xið Þ; i 2 AÞ�

P Z xð Þ ¼ kjz xið Þ; i 2 Að Þ; ð1Þ

where f is a joint conditional probability density function,
referred to as a likelihood function, and C is a normalizing
coefficient included so that the summation of the condi-
tional probability for different types of lithofacies equals
one.
[9] We can simplify the Bayesian model given in Equa-

tion (1) by dropping z(xi), i 2 A, from the likelihood
function under the Markov assumption [Almeida and Jour-
nel, 1994]. Let Ik(x) be an indicator random variable,
defined by

Ik xð Þ ¼ 1 if ZðxÞ ¼ k

0 otherwise
;

�
ð2Þ

and therefore {Z(x) = k} is equivalent to {Ik(x) = 1}. We
replace {Z(x) = k} with {Ik(x) = 1} in Equation (1), and let
Pprior(Ik(x) = 1) = P(Ik(x) = 1jz(xi), i 2 A), referred to as

prior probability, and Ppost(Ik(x) = 1) = P(Ik(x) = 1jg1(x),
g2(x), � � �, gt(x), z(xi), i 2 A), referred to as posterior
probability. This leads to

Ppost Ik xð Þ ¼ 1ð Þ ¼ Cf g1 xð Þ; g2 xð Þ; � � � ;ð½ gt xð ÞjIk xð Þ ¼ 1Þ�

�Pprior Ik xð Þ ¼ 1ð Þ:
ð3Þ

[10] In Equation (3), we present a Bayesian approach for
obtaining the probability of the kth lithofacies occurring at
location x, using lithofacies measurements and geophysical
data. The lithofacies measurements were used to infer the
prior probability, whereas the geophysical data were used to
update the prior through the likelihood function. We can use
the obtained posterior probability to estimate lithofacies at
each location, as we did later in the two case studies, and the
uncertainty of the estimation is determined by Var(Ik(x)) =
Ppost(Ik(x) = 1) � [1 	 Ppost(Ik(x) = 1)], where Var(�) is the
variance of the indicator variable Ik(x) [Stone, 1995]. We
can also use the posterior probability to generate lithofacies
random fields, using the sequential indicator simulation
methods [Deutsch and Journel, 1998]. Note that the prob-
ability of the kth lithofacies occurring at location x itself can
be considered as a random variable defined on [0, 1], and
estimation of the probability is also subject to uncertainty.
This is not our focus in the paper, and the reader interested
in the topic is referred to Stone [1995].

2.2. Prior Probability

[11] The prior probability in Equation (3) can be estimated
from lithofacies measurements, z(xi), i 2 A, using indicator
kriging [Rosenbaum et al., 1997; Deutsch and Journel,
1998]. Let pk be the unconditional probability of the kth
type of lithofacies occurring at location x, which can be
estimated from borehole lithofacies measurements. The prior
probability thus is given by the simple kriging estimator:

Pprior Ik xð Þ ¼ 1ð Þ ¼ pk þ
X
i2A

li xð Þ Ik xið Þ 	 pkð Þ: ð4Þ

The coefficient li(x), i 2 A, are obtained by solving the
following equation:

X
i2A

li xð ÞCI xi; xj
� �

¼ CI x; xj
� �

; j 2 A; ð5Þ

where CI(xi, xj) and CI(x, xj) represent the covariance of the
indicator variables at locations xi and xj, and at locations x
and xj, respectively.
[12] In this study, we use only lithofacies measurements

at boreholes to determine the prior probability. Other types
of information such as geologic interpretation and expert
experience can also be incorporated into estimation of the
prior [Rubin, 2003]. As the distances between locations x
and xi, i 2 A, become large, the conditional probability will
be close to the unconditional probability pk, and lithofacies
measurements at boreholes will have little influence on the
estimation.

2.3. Likelihood Function

[13] The likelihood function in Equation (3) is the link
between lithofacies and geophysical attributes, and can be
inferred using collocated lithofacies and geophysical data.
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The inference, however, is challenging because correlations
between lithofacies and geophysical attributes are often
nonlinear, and covariance-based likelihood functions [Kita-
nidis, 1986; Copty and Rubin, 1995] may not be applicable.
[14] As an alternative to the covariance-based likelihood

functions, we propose a nonparametric approach. Let h(x, Q)
be a function derived from a fuzzy neural network with
several decision rules, where Q is a vector of parameters. Let
l(x) be the logarithm of the likelihood function (log-like-
lihood) given by

l xð Þ ¼ log Cf g1 xð Þ; g2 xð Þ; � � � ;ðð gt xð ÞjIk xð Þ ¼ 1ÞÞ: ð6Þ

We can approximate l(x) with h, which can be identified
from a training data set (g1(xi), g2(xi), � � �, gt(xi), l(xi)), i 2
A, by minimizing:

X
i2A

h xi; qð Þ 	 l xið Þ½ �2: ð7Þ

The log-likelihood l(x) at an arbitrary location x in Equation
(7) is unknown, but it can be estimated at measurement
locations xi, i 2 A, as described in the next section.
[15] The method for determining likelihood functions in

this study is different from the maximum likelihood method
used by Kitanidis and Vomvoris [1983], Rubin and Dagan
[1988, 1989], Kitanidis [1997], and Rubin [2003]. They
assumed a Gaussian probability model with the mean and
covariance of the distribution as parameters and identified
the parameters by searching for those values that maximize
the probability of observing the measurements. In our
approach, however, no assumption is made with regard
to the form of the likelihood function or the posterior
probability. Instead, we seek a nonparametric function to
approximate the true log-likelihood by minimizing the sum
of the squared residuals between the true log-likelihood and
the approximated values at measurement locations. We use
the obtained nonparametric function to replace the true log-
likelihood in lithofacies estimation.

3. Fuzzy Neural Network

[16] A fuzzy neural network is a model based on fuzzy
sets and fuzzy reasoning [Takagi and Sugeno, 1985]. A
fuzzy set is a collection of elements with a continuum of
grades of membership [Rojas, 1996]. It provides an intuitive
way to describe imprecise information or ambiguous cate-
gorization. For example, a cluster plot of g1(x) versus g2(x)
in an ideal situation can be classified as a few well-defined
crisp clusters. Most real-life situations, however, are defined
by overlapped fuzzy clusters as shown in Figure 1. Proba-
bilistic tools can assign probability for one interpretation or
another, but such approaches preclude interpretation such as
‘‘close to B but with some features of A in it’’. This is where
the methods developed by fuzzy logic can come in handy.
[17] Fuzzy reasoning is similar to human thinking and

implemented using a set of inference rules. Humans do not
always comprehend numbers well but understand a collec-
tion of data that can be assembled or associated meaningfully
by consequence of their similarity, resemblance, or opera-
tional cohesion [Hirota and Pedrycz, 1999]. Following this
idea, a fuzzy neural network first classifies original data into
several clusters and then applies the results to fuzzy rules for

inferences. This model looks simple, but it is very effective
and robust in modeling complex relations [Zadeh, 1994].
[18] In our application, we do not employ the advantage

of fuzzy logic in describing imprecise information; rather,
we benefit from it as a tool for modeling nonlinear corre-
lations. We believe that our approach opens the door for
using fuzzy logic to deal with large varieties of information
and complex relations among them. In the remainder of this
section, we will first introduce the structure of the fuzzy
neural network and then outline the learning algorithm for
parameter identification. Our focus is on model implemen-
tation rather than intuitive interpretation of parameters.

3.1. Structure

[19] The fuzzy neural network used in this study is similar
to the one given by Takagi and Sugeno [1985] and Jang
[1993]. To illustrate the network, let us consider two types of
geophysical attributes with two possible decision rules. Let
g1(x) and g2(x) be geophysical attributes at location x. Using
the notations employed by Zadeh [1965], the rules are
defined as follows: rule 1, If g1(x) is A1 and g2(x) is B1, then
the consequence is o1; rule 2, if g1(x) is A2 and g2(x) is B2,
then the consequence is o2. Each inference rule includes two
parts, the premise and the consequence. Ai and Bi (i = 1, 2) in
the premises of those rules are linguistic labels, such as small
and large, or fuzzy sets, defined by membership functions
mAi

[g1(x)] and mBi
[g2(x)]:

mAi g1 xð Þ½ � ¼ exp 	 g1 xð Þ 	 ci1

si1

� �2
 !

;

mBi g2 xð Þ½ � ¼ exp 	 g2 xð Þ 	 ci2

si2

� �2
 !

;

ð8Þ

where ci1 and ci2 are the centers of fuzzy sets Ai and Bi, and
si1 and si2 are parameters measuring the spread of data
around their corresponding centers, referred to as the bases
of the fuzzy sets. The variables o1 and o2 in the conse-
quences of the fuzzy rules are determined from training data
sets during the learning process, which can be constants or
linear functions of input g1(x) and g2(x) [Takagi and Sugeno,
1985]. The choice of the consequences depends on the
complexity of applications. For those applications involving
highly nonlinear functions, we shall use linear functions of
input as the consequences. For simplicity, we use constants

Figure 1. Examples of fuzzy clusters.
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as the consequences in this study, but the developed methods
are applicable to the consequences that are linear functions of
input.
[20] Figure 2 shows the premises of the two inference

rules in the fuzzy neural network. The weights of rule-1 and
rule-2 at location x are determined using geophysical data
g1(x) and g2(x). We first compute the grade of membership
mAi

[g1(x)] of g1(x) in fuzzy sets Ai and the grade of member-
ship mBi

[g2(x)] of g2(x) in fuzzy set Bi. We then determine
the weights as follows:

wi xð Þ ¼ mAi g1 xð Þ½ � � mBi g2 xð Þ½ �; i ¼ 1; 2: ð9Þ

Although other methods may also be used to compute the
weights, the current method is computationally most efficient
[Takagi and Sugeno, 1985]. The output of the network is a
weighted linear combination of each consequence as given by

h x; qð Þ ¼ w1 xð Þo1 þ w2 xð Þo2
w1 xð Þ þ w2 xð Þ ; ð10Þ

where Q is a vector of parameters containing ci1, ci2, si1, si2,
and oi (i = 1, 2). This system is very efficient in fitting
nonlinear functions. As shown by Jang [1993] and Rojas
[1996], it can be used to approximate any continuous
function defined on a bounded domain. One reason for
the efficiency is that the weights are nonlinear functions of
g1(x) and g2(x), which are based on the patterns inherent in
training data sets.
[21] Figure 3 shows the structure of the fuzzy neural

network in which the computational process from one layer
to another is illustrated. The input to each node in layer 1 is
g1(x) or g2(x), and the output is the corresponding grades of
membership. The outputs of the nodes in layer 2 and 3 are
the weights wi(x) and relative weights �wi(x) = wi(x)/(w1(x) +
w2(x)), respectively. The input to each node in layer 4 is the
relative weight �wi(x) and the consequence oi, and the output
of each node is the product of its corresponding input. The
node in the last layer is the summation of all incoming
signals to the node as given by h(x, Q) = �w1(x)o1 + �w2(x)o2,
which is equivalent to Equation (10).

3.2. Model Calibration

[22] The illustrative example in the last section contains
only two inference rules. In real situations, however, before
applying the fuzzy neural network to the problem of

lithofacies estimation, we need to determine the number
of inference rules required and identify from the data the
parameters associated with those rules.
3.2.1. Structure Identification
[23] The intention of structure identification is to deter-

mine the number of inference rules and to provide the initial
values of the center and base of each fuzzy set. We will use
the fuzzy C mean (FCM) cluster analysis method [Bezdek,
1981] to identify possible patterns in the input data space.
Let (g1(xj), g2(xj)), j 2 A, be an input data set, and suppose
we want to divide this data set into m clusters. Using the K
means algorithm [Hartigan and Wong, 1979] or model-
based clustering methods [Banfield and Raftery, 1993], we
can divide the data set into m crisp subsets, in which each
element in the data set can only belong to one of the subsets.
Such methods are limited because they do not allow an
element to partially belong to more than one subset.
[24] The fuzzy C mean algorithm divides the input data

set into m fuzzy clusters, each of which is a fuzzy set in the
sense that the boundaries between sets are poorly defined
and possibly overlap. Any data point may partially belong
to several fuzzy clusters with different grades of member-
ship. Let ci = (ci1, ci2)

T be the vector of centers of the ith
fuzzy cluster, yj = (g1(xj), g2(xj))

T be the jth input data point,
and uij be the grade of membership of yj in the ith fuzzy
cluster, where i = 1, 2, � � �, m and j 2 A. The algorithm for
the clustering can be outlined as follows.
[25] 1. Randomly assign the initial grades of membership

uij 2 [0, 1] under the constraint �i=1
m uij = 1.

[26] 2. Compute the center of each fuzzy cluster using

ci ¼
P

j2A u
f
ijyjP

j2A u
f
ij

; i ¼ 1; 2; � � � ;m; ð11Þ

where f > 1 is the fuzziness index and the default value is 2
[Bezdek, 1981].
[27] 3. Update the grades of membership using the newly

obtained centers ci, i = 1, 2, � � �, m. Let dij = k ci 	 yjk and
dkj = k ck 	 yj k. If dij = 0, let uij = 1 and ukj = 0 for k 6¼ i;
otherwise, let

uij ¼
1=dij
� � 2

f	1Pm
k¼1 1=dkj
� � 2

f	1

: ð12Þ

[28] 4. Compare the newly updated grades of member-
ship with the old ones. If they are close to each other, stop
the iteration; otherwise, go back to step 2.

Figure 2. Premises of the fuzzy inference rules.

Figure 3. Structure of the fuzzy neural network.
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[29] The number of fuzzy rules is determined by consid-
ering both compactness and separation of fuzzy clusters [Xie
and Beni, 1991]. The compactness of the clusters is defined
as the weighted squared distance as given by

J c1; c2; � � � ; cmð Þ ¼
Xm
i¼1

X
j2A

u
f
ij k ci 	 yj k2 : ð13Þ

The separation of the clusters is defined as the minimum
distance between the centers of each pair of clusters as
follows

dmin ¼ min
i 6¼j

k ci 	 cj k; i; j ¼ 1; 2; � � � ;m: ð14Þ

Both compactness and separation decrease with the
increasing of the number of fuzzy clusters. For a good
cluster analysis, data points within clusters are expected to
be compact, whereas the cluster centers are expected to be
well separated. Consequently, the number of clusters can be
determined by minimizing the function

S ¼ J c1; c2; � � � ; cmð Þ=n
d2min

; ð15Þ

where n is the total number of data points. The minimization
of S is straightforward, as we know the number of clusters is
greater than 1 but less than the total number of data points n.
We first calculate S for m = 2, 3, � � �, n 	 1, and then select
the value of m that gives the minimal value of S as the
maximum number of clusters.
3.2.2. Parameter Identification
[30] After determining the number of fuzzy rules, which

is equal to the number of fuzzy clusters, we need to identify
the parameters associated with each of the rules. For
example, in the case of two inference rules as shown in
Figure 2, we need to estimate centers and bases of all fuzzy
sets, ci1, ci2, si1, si2, and the consequences of each rule oi,
where i = 1, 2. We started from the initial values of ci1, ci2,
si1, si2, where ci1 and ci2 are obtained from Equation (11)
and si1 and si2 are given by the sample deviations of the
clusters.
[31] The training data in the example consist of geo-

physical data (g1(xi), g2(xi)), the input to the fuzzy neural
network system, and the corresponding log likelihood l(xi),
the output of the system. The log likelihood value is not a
measurement but can be estimated based on a simple
postulate. Using Equations (3) and (6) and replacing x with
xi, we obtain

l xið Þ ¼ log Ppost Ik xið Þ ¼ 1ð Þ

 �

	 log Pprior Ik xið Þ ¼ 1ð Þ

 �

: ð16Þ

The prior probability Pprior(Ik(xi) = 1) can be estimated from
lithofacies measurements at other boreholes using indicator
kriging, and the posterior probability Ppost(Ik(xi) = 1) is
assigned (as postulated) according to the lithofacies meas-
urement at location xi. Special care should be taken when
the prior and posterior probabilities are close to zero since
log transformation of zero is invalid. We can use the
following rules to avoid zero values of prior and posterior
probabilities.

1. Let Pprior(Ik(xi) = 1) = e, if Pprior(Ik(xi) = 1) < e.
2. Let Ppost(Ik(xi) = 1) = 1 	 e, if z(xi) = k; let Ppost

(Ik(xi) = 1) = e, otherwise.
In this model, we employed e between 0.01 and 0.05.
Although the value of e may seem to be arbitrary, the
estimated results are not sensitive to it. Details of the algo-
rithm for determining parameters is given in Appendix A.

4. Case Study 1

[32] The first case study demonstrates the effectiveness of
BFNN in combining borehole and cross-hole data for
lithofacies estimation, using a synthetic data set generated
based on field measurements at the Lawrence Livemore
National Laboratory (LLNL) Site in California. The hydro-
geology of the site is very complex, but a considerable
amount of geological, geophysical, hydrogeological, and
geochemical data are available [Ezzedine et al., 1999].
These provide us a unique opportunity to study the use of
geophysical data for shallow subsurface characterization.

4.1. Synthetic Data

[33] Our focus is on the area near treatment facility D
(TFD) at the LLNL site shown in Figure 4. Of all the
geophysical logs collected at the site, gamma ray and
electrical resistivity logs were found to be most informative
for lithofacies identification. Table 1 summarizes the geo-
statistical properties of the lithofacies, gamma ray, and
electrical resistivity obtained from borehole measurements
within hydro-stratigraphic unit 2 (HSU2). The gamma ray
measurements were converted into shaliness to remove
inconsistencies associated with data acquisition [Doveton,
1986], using the method described by Ezzedine et al.
[1999]. Lithofacies and gamma ray shaliness have large
correlation lengths, while electrical resistivity is spatially
uncorrelated.
[34] Synthetic data were generated along a profile

between wells 1205 and 1251 as indicated by a solid line
in Figure 4, using the parameters listed in Table 1. We first
generated a two-dimensional lithofacies field by condition-

Figure 4. Locations of the well bores on the area near
treatment facility D (TFD) at the Lawrence Livemore
National Laboratory Site in California. The circles denote
well bores, and the solid lines denote the profiles along
which the synthetic data are generated.
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ing to lithofacies measurements at the boreholes using the
sequential indicator simulation method [Rubin, 2003]. We
then generated a two-dimensional gamma ray shaliness field
by conditioning to both the previously generated lithofacies
field and the gamma ray shaliness available at the boreholes
using the sequential Gaussian simulation method [Deutsch
and Journel, 1998]. Finally, by conditioning to the previ-
ously generated lithofacies and gamma ray shaliness fields,
we obtained a two-dimensional electrical resistivity field
along the same profile.

[35] We divided the synthetic data set into two subsets,
one for training and the other for testing. The training
subset was created by randomly selecting eight boreholes
as shown in Figure 5. The testing subset is the remaining
synthetic data. Figure 6 shows a comparison of the
normalized indicator experimental and theoretical vario-
grams. The consistency between the two variograms con-
firms that the generated lithofacies field is a realization of
the random field with the spatial structure given in Table
1. Figure 7 shows a scatterplot of gamma ray shaliness
versus electrical resistivity based on data at the eight
boreholes. We notice that the cross correlation between
gamma ray shaliness and electrical resistivity is nonlinear
and nonunique.

4.2. Approach

[36] The advantages of using BFNN for lithofacies esti-
mation are investigated through comparison with several
other models commonly used for site characterization. Each
model is first calibrated using the data at the eight bore-
holes, and the calibrated model then is used to estimate
lithofacies at each testing location. We compare the esti-
mated results with their corresponding true values to eval-

Table 1. Statistical Properties of Lithofacies and Geophysical Data

Lithofacies

Sand Silt
Gamma Ray
(Shaliness)

Resistivity
(�m)

Proportion 0.52 0.48 NA NA
Horizontal range(m) 30.0 30.0 25.0 NA
Vertical range(m) 1.50 1.50 2.50 NA
Nugget 0.0 0.0 0.011 SR

2

Sill 0.25 0.25 0.040 SR
2

Variogram model exponential exponential Gaussian NA

Figure 5. Simulated (a) lithofacies field with silt (black) and sand (white), (b) gamma ray shaliness field
with values between 0 (black) and 1 (white), and (c) electrical resistivity field with values between 5�m
(black) and 30�m (white), based on the field measurements at the LLNL site.
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uate the efficiency of each model. To further explore the
effects of the spatial correlation, we count the total number
of misclassification as a function of the minimum distances
between the testing and measurement locations.
[37] The models used for comparison include indicator

kriging, indicator cokriging, and the fuzzy neural network
(FNN) that does not consider spatial correlation of lithofa-
cies [Chang et al., 1997]. The indicator kriging is described
in section 2.2, and the indicator cokriging is similar to the
method given by Almeida and Journel [1994], where only
collocated geophysical data are used. Since the indicator
variable and the shaliness vary between 0 and 1, we
normalize the electrical resistivity data to a range between
0 and 1 by first subtracting their minimum value and then
dividing by their range. The detailed model is given in
Appendix B.

4.3. Results

[38] Figure 8 shows the relative changes in misclassifi-
cation with increase in the minimum distances between the
testing and measurement locations using the different
approaches. For FNN model, the percentage of misclassifi-
cation does not depend on the minimum distances because
lithofacies at any location is estimated only from the

corresponding collocated geophysical data. Consequently,
although the method is as efficient as BFNN model when
the testing locations are far from the measurement locations,
it does not perform as well as the testing locations get closer
to the measurement locations.
[39] In the case of indicator kriging, misclassification also

increases with the minimum distances as shown in Figure 8.
As the distances increase, the lithofacies measurements
have limited direct influence on lithofacies estimation. As
a result, misclassification tends to a constant value deter-
mined by the unconditional probability of each type of
lithofacies. This is reasonable as indicator kriging is based
on spatial correlation of lithofacies, and it cannot consider
information at a large distance. However, BFNN clearly
benefits more from geophysical data at large distances from
boreholes.
[40] Figure 8 suggests that indicator cokriging performs

similar to BFNN model in terms of the percentages of
misclassification, but this may not be always the case.
Indicator cokriging is a covariance-based predictor that
depends on correlation and cross correlation coefficients.
In this case study, there are only two types of lithofacies,
and the nonlinearity of the cross correlations between the
geophysical attributes and lithofacies is somewhat reduced.
The advantages of using BFNN model compared to the
indicator cokriging are therefore not obvious. This aspect
will be investigated in the next section.

5. Case Study 2

[41] The second case study is designed to evaluate the
effects of nonlinear cross correlations between lithofacies
and geophysical attributes on the performances of BFNNFigure 6. Variograms (a) along the horizontal direction

and (b) along the vertical direction. The dashed lines with
circles are the experimental variograms based on the data
sampled at the eight boreholes, and the solid lines are the
theoretical ones used for generating the synthetic data.

Figure 7. Scatterplot of gamma ray shaliness versus
electrical resistivity based on the data sampled at the eight
boreholes. The solid dots denote sand, and the squares
denote silt.
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and indicator cokriging models. Since the nonlinearity of
the cross correlations usually increases with the number of
lithofacies types, we will conduct our analysis on synthetic
data with two, three, and four types of lithofacies.

5.1. Synthetic Data

[42] Synthetic data for the case study include three
lithofacies fields shown in Figure 9 and geophysical data
generated along five boreholes shown as solid lines. Each
field is of dimension 120 m  40 m and generated using the
indicator sequential simulation method. The indicator vario-
grams for all types of lithofacies were modeled as an
exponential model with an integral scale of 10m in the
horizontal direction and 1m in the vertical direction.
[43] Unlike the first case study, we sampled the three

lithofacies fields at intervals of 20 m. Along each of the
boreholes, we randomly generated electrical resistivity and
seismic velocity using a Gaussian random generator with
mean and standard deviation values determined according
to the collocated lithofacies and the data given in Table 2.
The mean values of resistivity in Table 2 were obtained
from resistivity logs collected from w1250 at the LLNL site,
and the mean values of seismic velocity were chosen based
on published parameter ranges for unconsolidated saturated
sediments [Lankston, 1990; Hyndman et al., 1994]. We
changed the complexity of the cross correlations by adjust-
ing the standard deviations. Figure 10 shows the cross plots
of the synthetic data at the five boreholes. It is evident that
the nonlinearity of the cross correlations increases with the
number of lithofacies types.

5.2. Approach

[44] In this case study, we followed an approach similar to
the one used by Chen et al. [2001]. Data at each of the five
boreholes were in turn to be considered as a testing set, and

data at the corresponding other four boreholes were taken as
a training set. We first used the data in the training set to train
BFNN and indicator cokriging models and then used the
trained models to estimate lithofacies at each testing loca-
tion. The estimated values were compared to the correspond-
ing true values, and the performance of each model was
evaluated by analyzing the percentages of misclassification.

5.3. Results

[45] Table 3 summarizes the misclassifications for each
data set shown in Figure 10. For the case of two types of

Figure 8. Comparison of misclassification using the
synthetic data set, where I = 10 m is the integral length of
sand along the horizontal direction.

Figure 9. Synthetic lithofacies fields (a) with silt and silty
sand, (b) with silt, silty sand, and sand, and (c) with silt,
silty sand, sand, and gravel.

Table 2. Means and Standard Deviations of Geophysical Data for

Each Type of Lithofacies

Lithofacies

Resistivity (�m) Seismic Velocity, m/s

Mean Standard Deviation Mean Standard Deviation

Silt 10.43 1.23 1520 130.0
Silty sand 12.89 2.10 1780 105.0
Sand 18.81 2.90 1830 105.0
Gravel 25.65 1.42 1620 105.0
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lithofacies, the nonlinearity of the cross correlation is not
high, and the difference in misclassification between BFNN
and indicator cokriging models is not significant. These
results are consistent with the ones in the first case study. As
the number of lithofacies types or the nonlinearity of the
cross correlation increases, however, the differences
between the two models become evident. Similar results
can also be obtained if the interval between the sampled
boreholes is reduced.

6. Conclusions

[46] In this study, we developed an effective Bayesian
model for lithofacies estimation. The prior probability is
estimated from lithofacies measurements using indicator
kriging based on spatial correlation of lithofacies. The
posterior probability is updated from the prior using geo-
physical data through the likelihood function. The effective-
ness of the model in combining geophysical data comes
from the use of a fuzzy neural network for the inference of
likelihood functions.
[47] We used a fuzzy neural network as a nonparametric

model to derive likelihood functions from cross correlations
between lithofacies and geophysical attributes. These rela-
tions are typically complicated and site-specific due to the
difference in measurement scales of lithofacies and geo-
physical data and due to uncertainty associated with acquis-
ition and interpretation of the geophysical data. Compared
to covariance-based likelihood functions, this method is
more flexible and powerful in dealing with field data
because it requires much less assumptions about the form
of the likelihood functions.
[48] We demonstrated the Bayesian model coupled with a

fuzzy neural network (BFNN) in the study using two sets of
synthetic data. Results showed that BFNN is more effective
than indicator kriging, indicator cokriging, and the fuzzy
neural networks without using spatial correlation (FNN) in
handling nonlinear correlation. Each of the alternatives can
be considered as a special case of BFNN in different
situations. BFNN is similar to the indicator kriging when
estimating locations are close to measurements, similar to
FNN when estimating locations are far from measurements,
and similar to the indicator cokriging when the number of
lithofacies types is less than three or the nonlinearity of
cross correlation is not high.
[49] BFNN is particularly useful in cases where the non-

linearity of cross correlation between lithofacies and geo-

Figure 10. Cross plots of electrical resistivity versus
seismic velocity (a) with two types of lithofacies, (b) with
three types of lithofacies, and (c) with four types of
lithofacies.

Table 3. Percentages of Misclassification Using Different Ap-

proaches

Testing Wells Indicator Kriging Indicator Cokriging BFNN

Case 1
Well-1 54 5 7
Well-2 39 7 5
Well-3 39 5 2
Well-4 36 2 0
Well-5 46 12 5
Average 43 6 4
Standard deviation 7 6 4

Case 2
Well-1 63 20 24
Well-2 56 22 7
Well-3 39 12 10
Well-4 46 10 7
Well-5 49 29 15
Average 51 19 13
Standard deviation 9 8 7

Case 3
Well-1 76 37 24
Well-2 66 39 10
Well-3 68 24 22
Well-4 71 34 24
Well-5 71 41 17
Average 70 35 20
Standard deviation 4 7 6
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physical attributes is high and estimating locations are
within two or three integral lengths of lithofacies. BFNN
is also efficient in handling multi-dimensional data sets
because it uses a fuzzy neural network to infer likelihood
functions; this allows for identification of complex patterns
inherent in the multi-dimensional data sets, which are
otherwise very difficult to obtain.
[50] BFNN has limitations. We assume that collocated

geophysical data are available at any estimating location
and the Markov conditions are satisfied. This is only
applicable when we estimate lithofacies along geophysical
tomographic profiles or when there are many borehole
measurements and cross-hole geophysical data so that geo-
physical data can be interpolated to any estimating location.
Another limitation is that although we use a nonparametric
method to infer likelihood functions, the prior is still
assumed Gaussian distribution and derived using kriging.
It is possible to develop a nonparametric method, such as
the minimum relative entropy method developed by Wood-
bury and Rubin [2000] to estimate the prior.

Appendix A: Algorithm for Parameter
Identification

[51] We jointly use the least squares and the Levenberg-
Marquardt methods [McKeown, 1980] in this study to
identify parameters because h(x, Q) in Equation (10) is a
linear function of o1 and o2. The method is referred to as the
hybrid model and has been demonstrated to be very efficient
[Takagi and Sugeno, 1985; Jang, 1993; Nikravesh, 1998].
In the model, parameters o1 and o2 are determined using the
least squares method, and other parameters, including ci1,
ci2, si1 and si2, i = 1, 2, are estimated using the Levenberg-
Marquardt method. Let o = (o1, o2)

T, A = (c11, c12, c21, c22,
s11, s12, s21, s22)

T, and RSS be the residual sum of squares
as given below:

RSS o;að Þ ¼
X
i2A

h xi; o;að Þ 	 l xið Þ½ �2: ðA1Þ

We first estimate parameter o(1), where the superscript
denotes the iteration number, using the least squares method
given the initial value A

(0), obtained from the previous
structure identification. We then estimate parameter A

(1),
using the Levenberg-Marquardt method, given the newly
updated o(1). Finally, we compute the most recently
obtained residual sum of squares (RSS) and compare it with
the previous one. The iterations are terminated when RSS
ceases to change.

A1. Least Squares Estimation Method

[52] The least squares method used in the hybrid model is
straightforward. Given parameter a, relative weights �w1(xi)
and �w2(xi) for each input (g1(xi), g2(xi)), i 2 A, can be
calculated to get a matrix w as follows,

�w1 x1ð Þ �w2 x1ð Þ
�w1 x2ð Þ �w2 x2ð Þ

..

. ..
.

�w1 xnð Þ �w2 xnð Þ

2
6664

3
7775: ðA2Þ

Let l = (l(x1), l(x2), � � �, l(xn))T. The relation between the
consequence of each fuzzy rule and the output of the system
is given by wo = l, and the least squares estimate of
parameter o is given by (wTw)	1wTl [Stone, 1995].

A2. Levenberg-Marquardt Method

[53] The Levenberg-Marquardt algorithm is the nonlinear
optimization method used in this study to estimate param-
eter a for a given parameter o. It is a revised Gaussian-
Newton method and requires iteratively evaluating residuals
e = (e1, e2, � � �, en)T, where ei = h(xi, o, A)	l(xi), i 2 A, and
Jacobian matrix J given by [McKeown, 1980]

@e1
@c11

@e1
@c12

@e1
@c21

@e1
@c22

@e1
@s11

@e1
@s12

@e1
@s21

@e1
@s22

@e2
@c11

@e2
@c12

@e2
@c21

@e2
@c22

@e2
@s11

@e2
@s12

@e2
@s21

@e2
@s22

..

. ..
. ..

. ..
. ..

. ..
. ..

.

@en
@c11

@en
@c12

@en
@c21

@en
@c22

@en
@s11

@en
@s12

@en
@s21

@en
@s22

2
666666666664

3
777777777775
; ðA3Þ

where

@ei
@cks

¼ 2�wk xið Þ ok 	 h xi; o;að Þ½ � � gs xið Þ 	 cks½ �
s2ks

; k; s ¼ 1; 2;

@ei
@sks

¼ 2�wk xið Þ ok 	 h xi; o;að Þ½ � � gs xið Þ 	 cks½ �
s3ks

2

; k; s ¼ 1; 2;

ðA4Þ

which are obtained using the chain rule of differentiation
and the membership functions given in Equation 8. The
detailed algorithm is as follows.
[54] 1. Compute residual e and Jacobian matrix J for

given parameters A(0) and set t = 0.
[55] 2. Check gradient JTe. If jJTej < e, stop; otherwise, go

to next step.
[56] 3. For a given positive value g, compute A(t) = A

(t	1)

	 (JTJ + gI)	1JTe, where I is an identity matrix, and check
whether RSS(o(t),A(t)) < RSS(o(t),A(t	1)). If it does, go to
next step; otherwise increase the g value and repeat step 3
until the RSS is reduced.
[57] 4. Check jA(t)	A

(t	1)j < �. If it does, stop; other-
wise, set t = t + 1 and repeat step 1.

Appendix B: Indicator Cokriging

[58] Let g1(x) be the gamma ray shaliness and g2(x) the
normalized electrical resistivity at location x. The condi-
tional probability of the kth lithofacies occurring at location
x is given by

P Z xð Þ ¼ kjg1 xð Þ; g2 xð Þð Þ ¼ pk þ
X
i2A

li xð Þ Ik xið Þ 	 pkð Þ

þ s1 xð Þ g1 xð Þ 	m1ð Þ

þ s2 xð Þ g2 xð Þ 	m2ð Þ; ðB1Þ
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and

X
i2A

li xð ÞrI xi; xj
� �

þ s1 xð ÞrIg1 x; xj
� �

þ s2 xð ÞrIg2 x; xj
� �

¼ rI x; xj
� �

; j 2 A;

X
i2A

li xð ÞrIg1 x; xið Þ þ s1 xð Þrg1 þ s2 xð Þrg1g2 ¼ rIg1;

X
i2A

li xð ÞrIg2 x; xið Þ þ s1 xð Þrg1g2 þ s2 xð Þrg2 ¼ rIg2; ðB2Þ

where m1 and m2 are the means of the gamma ray shaliness
and the normalized resistivity, and s1 and s2 are the cokriging
coefficients of the gamma ray shaliness and the normalized
resistivity. rI, rg1 and rg2 are the correlation coefficients of
the indicator variable, the gamma ray shaliness, and the
electrical resistivity, respectively. rIg1, rIg2, and rg1g2 are the
cross correlation coefficients between the indicator variable
and the geophysical data g1(x) and g2(x).
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